396
Biology and Biotechnology of Environmental Stress Tolerance in Plants, Volume 3
Ravichandran, S., Ragupathy, R., Edwards, T., Domaratzki, M., & Cloutier, S., (2019).
MicroRNA-guided regulation of heat stress response in wheat. BMC Genomics, 20(1),
1–16.
Ren, B., Robert, F., Wyrick, J. J., Aparicio, O., Jennings, E. G., Simon, I., Zeitlinger, J., et al.,
(2000). Genome-wide location and function of DNA binding proteins. Science, 290(5500),
2306–2309.
Robertson, A. L., & Wolf, D. E., (2012). The role of epigenetics in plant adaptation. Trends
Ecol. Evol., 4(1), e4.
Rozema, J., & Flowers, T., (2008). Crops for a salinized world. Science, 1478–1480.
Sadakierska-Chudy, A., & Filip, M., (2015). A comprehensive view of the epigenetic
landscape. Part II: Histone post-translational modification, nucleosome level, and chromatin
regulation by ncRNAs. Neurotox Res., 27(2), 172–197.
Sahu, P. P., Pandey, G., Sharma, N., Puranik, S., Muthamilarasan, M., & Prasad, M., (2013).
Epigenetic mechanisms of plant stress responses and adaptation. Plant Cell Rep., 32(8),
1151–1159.
Samac, D. A., & Tesfaye, M., (2003). Plant improvement for tolerance to aluminum in acid
soils–a review. Plant Cell, Tissue Organ Cult., 75(3), 189–207.
Sanchez, D. H., & Paszkowski, J., (2014). Heat-induced release of epigenetic silencing
reveals the concealed role of an imprinted plant gene. PLoS Genet., 10(11), e1004806.
Sani, E., Herzyk, P., Perrella, G., Colot, V., & Amtmann, A., (2013). Hyperosmotic priming
of Arabidopsis seedlings establishes a long-term somatic memory accompanied by specific
changes of the epigenome. Genome Biol., 14(6), 1–24.
Sasidharan, R., Bailey‐Serres, J., Ashikari, M., Atwell, B. J., Colmer, T. D., Fagerstedt, K.,
Fukao, T., et al., (2017). Community recommendations on terminology and procedures
used in flooding and low oxygen stress research. New Phytol., 214(4), 1403–1407.
Saze, H., & Kakutani, T., (2007). Heritable epigenetic mutation of a transposon‐flanked
Arabidopsis gene due to lack of the chromatin‐remodeling factor DDM1. EMBO J., 26(15),
3641–3652.
Seto, E., & Yoshida, M., (2014). Erasers of histone acetylation: The histone deacetylase
enzymes. Cold Spring Harb Perspect Biol., 6(4), a018713.
Shahid, M., Khalid, S., Abbas, G., Shahid, N., Nadeem, M., Sabir, M., Aslam, M., & Dumat,
C., (2015). Heavy metal stress and crop productivity. In: Hakeem, K., (ed.), Crop Production
and Global Environmental Issues (pp. 1–25). Springer: Cham.
Shanker, A. K., Maheswari, M., Yadav, S. K., Desai, S., Bhanu, D., Attal, N. B., &
Venkateswarlu, B., (2014). Drought stress responses in crops. Funct. Integr. Genomics,
14(1), 11–22.
Shi, Y., Lan, F., Matson, C., Mulligan, P., Whetstine, J. R., Cole, P. A., & Casero, R. A.,
(2004). Histone demethylation mediated by the nuclear amine oxidase homolog LSD1.
Cell, 119(7), 941–953.
Shinozaki, K., & Yamaguchi-Shinozaki, K., (2007). Gene networks involved in drought stress
response and tolerance. J. Exp. Bot., 58(2), 221–227.
Singh, R. K., Jaishankar, J., Muthamilarasan, M., Shweta, S., Dangi, A., & Prasad, M., (2016).
Genome-wide analysis of heat shock proteins in C 4 model, foxtail millet identifies potential
candidates for crop improvement under abiotic stress. Sci. Rep., 6(1), 1–14.
Singroha, G., & Sharma, P., (2019). Epigenetic modifications in plants under abiotic stress.
In: Meccariello, R., (ed.), Epigenetics. IntechOpen.